107.1 Describe the following terms pertaining to motion:
b. Acceleration
The rate of change of the speed and/or velocity of matter with time.For example, if a ship, is moving at 10 knots, is moving at 18 knots one hour from now, and 21 knots 2 hours from now, it is said to be accelerating at a rate of 3 knots per hour.
c. Speed
The rate of movement or motion in a given amount of time. Speed is the term used when only the rate of movement is meant.For example, if the rate of movement of a ship is 14 knots, we say its speed is 14 knots per hour.
d. Velocity
107.2 Define the following laws of motion:
For example, once an airplane is moving, another force may act on it to bring it to a stop, otherwise it will continue in its motion.
The second law of motion (force) states that if an object moving with uniform speed is acted upon by an external force, the change of motion, or acceleration, will be directly proportional to the amount of force and inversely proportional to the mass of the object being moved.Simply stated, an object being pushed by 10 pounds of force will travel faster than it would if it were pushed by 5 pounds of force.
The third law of motion (action and reaction) states that for every action there is an equal and opposite reaction.107.3 Define Bernoulli's principle.
The general lift of an airfoil is dependent upon the airfoil's being able to create circulation in the airstream and develop the lifting pressure over the airfoil surface.
As the relative wind strikes the leading edge of the airfoil, the flow of air is split. Part is deflected upward and aft, and the rest is deflected down and aft. Since the upper surface of the wing has camber or a curve on it, the flow over its surface is disrupted, and this causes a wavelike effect to the wing. The lower surface is relatively flat. Lift is accomplished by the difference in the airflow across the airfoil.
107.4 Discuss the following weather warnings and their effect on naval aviation:
a. Wind warning
Please note: one knot equals approximately 1.1 mile-per-hour.Destructive weather poses a significant threat to personnel, aircraft, ships, installations, and other resources. Adequate and timely weather warnings, coupled with prompt and effective action by commanders concerned, will minimize loss and damage from destructive weather.
1. Small craft
2. Gale
Warning for harbor, inland waters, and ocean areas for winds of 34 to 47 knots.3. Storm
Warning for harbor, inland waters, and ocean areas for winds of 48 knots or greater.b. Tropical cyclone warnings
Tropical cyclones are systems of cylonically rotating winds characterized by a rapid decrease in pressure and increase in winds toward the center of the storm. Their size may vary from 60 nautical miles to over 1000 nautical miles. Three stages of intensity are associated with tropical cyclones:
1. Tropical depression
2. Tropical storm
Warning for land, harbor, inland waters, and ocean areas for winds of 34 to 63 knots.
3. Hurricane/typhoon
c. Thunderstorm/tornado warnings
1. Thunderstorm warning
Thunderstorms are within 3 miles of the airfield, or in the immediate area.
2. Severe thunderstorm warning
3. Tornado warning
107.5 Describe the following aerodynamic terms:
a. Lift
b. Weight
The force of gravity acting downward on the aircraft and everything on the aircraft.c. Drag
The force that tends to hold an aircraft back. Drag is caused by the disruption of the air about the wings, fuselage or body, and all protruding objects on the aircraft. Drag resists motion.
d. Thrust
e. Longitudinal axis
An imaginary reference line running down the center of the aircraft between the nose and tail. The axis about which roll occurrs.f. Lateral axis
An imaginary reference line running parallel to the wings and about which pitch occurrs.g. Vertical axis
An imaginary reference line running from the top to the bottom of the aircraft. The movement associated with this axis is yaw.107.6 State the three primary movements of aircraft about the axis.
b. Yaw - The movement of the aircraft about its vertical axis. The drift, or right or left movement of the nose of the aircraft.
c. Roll - The movement of the aircraft about its longitudinal axis. The movement of the wing tips; one up and the other down.
107.7 Identify and state the purpose of the primary flight controls for:
a. Fixed wing aircraft
b. Rotary wing aircraft
The collective stick controls the pitch of the rotor blades which translates to "up and down". The cyclic stick tilts the plane of the rotor blades forward, aft or sideways, giving the helicopter its directional motion. Lateral control is provided using the foot pedals to control the blades on the tail rotor.
107.8 State the purpose of the following flight control surfaces:
a. Flap
b. Spoiler
Used to decrease wing lift. However, the specific design, function, and use vary with different aircraft. On some aircraft, the spoilers are long narrow surfaces, hinged at their leading edge to the upper surfaces of the wings. In the retracted position, they are flush with the wing skin. In the raised position, they greatly reduce wing lift by destroying the smooth flow of air over the wing surfaces.c. Speed brakes
Hinged or moveable control surfaces used for reducing the speed of aircrft. On some aircraft, they are hinged to the sides or bottom of the fuselage; on others they are attached to the wings. They keep the speed from building too high in dives. They are also used to slow the speed of the aircraft prior to landing.d. Slats
Slats are movable control surfaces attached to the leading edge of the wing. When the slat is retracted, it forms the leading edge of the wing. When open, or extended forward, a slot is created between the slat and the wing leading edge.e. Horizontal stabilizer
Provides stability of the aircraft about its lateral axis. This is longitudinal stability. It serves as the base to which the elevators are attached. On some high-performance aircraft, the entire vertical and/or horizontal stabilizer is a movable airfoil. Without the movable airfoil, the flight control surfaces would lose their effectiveness at extrememly high speeds.f. Vertical stabilizer
Maintains the stability of the aircraft about its vertical axis. This is known as directional stability. The vertical stabilizer usually serves as teh base to which the rudder is attached.g. Tail rotor
Mounted vertically on the outer portion of the helicopter's tail section. The tail rotor counteracts the torque action of the main rotor by producing thrust in the opposite direction. The tail rotor also controls the yawing action of the helicopter.107.9 Explain the term angle of attack.
For example, an aircraft in straight and level flight has the relative wind directly in front of it and has zero angle of attack since the relative wind is directly striking the leading edge of the wing. An aircraft flying parallel to the ground which has the nose trimmed significantly up, now has the leading edge of the wing (chord line) pointed at an upward angle; however, the relative wind is striking the bottom of the wing. An analogy is to hold your hand out of the car window with your palm facing the ground (zero angle of attack), and then to rotate your hand slightly in either direction. Angle of attack is measured in "units" as opposed to degrees.
107.10 Explain the term autorotation.
Accomplished by lowering collective pitch lever to maintain rotor rpm while helicopter is decreasing in altitude, then increasing collective pitch at a predetermined altitude to convert inertial energy into lift to reduce the rate of descent and cushion the landing.
107.11 State the components of a basic hydraulic system.
b. A pump to provide a flow of fluid.
c. Tubing to transmit the fluid.
d. A selector valve to direct the flow of fluid.
e. An actuating unit to convert the fluid pressure into useful work.
107.12 Describe and explain the purpose of the main components of landing gear.
b. Tires - Allows the aircraft to roll easily and provides traction during takeoff and landing.
c. Wheel brake asembly - Used to slow and stop the aircraft. Also used to prevent the aircraft from rolling while parked.
d. Retracting and extending mechanism - All the necessary hardware to electrically or hydraulically extend and retract the landing gear.
e. Side struts and supports - Provides lateral strength/support for the landing gear.
107.13 State the safety precautions used when servicing aircraft tires on aircraft.
High tire pressure, cyclic loads, corrosion and physical damage contribute to failure of aircraft wheels. The wheel fragments can be propelled several hundred feet. Always approach the tires from fore and aft.
When inflating, stand off to the side. Deflate when removing from the aircraft.
107.14 State the 5 basic sections of a jet engine.
b. The compressor which is made of a series of rotating blades and a row of stationary stator vanes. The compressor provides high-pressure air to the combustion chamber (or chambers).
c. The combustion chamber where fuel enters and combines with the compressed air.
d. The turbine section which drives the compressor and accessories by extracting some of the energy and pressure from the combustion gases.
e. The exhaust cone which is attached to the rear of the engine assembly and eliminates turbulence in the emerging jet, thereby giving maximum velocity.
107.15 Describe the following engine systems:
a. Turbojet
Projects a column of air to the rear at an extremely high velocity. The resulting effect is to propel the aircraft in the opposite or forward direction.b. Turboshaft
Delivers power through a shaft to drive something other than a propeller. The power take off may be coupled directly to the engine, but in most cases it is driven by it's own free turbine located in the exhaust stream that operates independently on the engine. They have a high power-to-weight ratio and are currently used in helicopters.c. Turboprop
Propulsion is accomplished by the conversion of the majority of the gas-energy into mechanical power to drive a propeller. This is done by the addition of more turgine stages. Only a small amount of jet thrust is obtained on a turbo prop engine.d. Turbofan
Basically the same as a turbo prop except that the propeller is replaced by a duct-enclosed axial-flow fan. The fan can be part of the first stage compressor or mounted as a separate set of fan blades driven by an independent turbine depending on the fan design, it will produce somewhere around 50 percent of the engine's total thrust.107.16 State the purpose of an afterburner.
107.17 State the NATO symbols for the following fuels and briefly explain the characteristics and reasons for the use of each:
a. JP4-NATO Code F-40
b. JP5-NATO Code F-44
Has a flamespread rate of 100 feet per minute, and a flashpoint of 140 degrees F or 60 degrees C. JP-5 is the only approved fuel for use aboard naval vessels. The lowest flashpoint considered safe for use aboard naval vessels is 140 degrees F. This is the Navy's primary jet fuel.c. JP8-NATO Code F-34
Has a flamespread rate of 100 feet per minute, and a flashpoint of 100 degrees F or 40 degrees C.
107.18 Describe the 3 hazards associated with jet fuel.
107.19 Describe the symptoms of fuel vapor inhalation.
107.20 Explain the purpose of the Auxiliary Power Unit (APU).
107.21 Identify the reasons for and methods of Non-Destructive Inspection (NDI)
107.22 Discuss icing and its effects on the performance of naval aircraft.
107.23 State the purpose of the following:
a. Pitot-static
The tube or line from the pitot tube to the airspeed indicator applies the pressure of the outside air to the indicator. The indicator is calibrated so various air pressures cause different readings. The pitot tube is mounted on the outside of the aircraft at a point where air is least likely to be turbulent. It points in a forward direction parallel to the aircraft's line of flight.
Static means stationary or not changing. The static port introduces outside air, at its normal outside atmospheric pressure, as though the aircraft were standing still in the air. The static line applies this outside air to the airspeed indicator, altimeter, and rate-of-climb indicator.
b. Airspeed indicator
The airspeed indicator displays the speed of the aircraft in relation to the air in which it is flying. In some instances, the speed of the aircraft is shown in Mach numbers. The Mach number gives the speed compared to the speed of sound in the surrounding medium (local speed). For example, if an aircraft is flying at a speed equal to one-half the local speed of sound, it is flying at Mach 0.5. If it moves at twice the speed of sound, its speed is Mach 2.c. Altimeters
The altimeter shows the height of the aircraft above sea level. The face of the instrument is calibrated so the counter or pointer displays the correct altitude of the aircraft.d. Rate-of-climb
The rate-of-climb indicator shows the rate at which an aircraft is climbing or descending.e. Attitude indicator
A pilot determines aircraft attitude by referring to the horizon. Often, the horizon is not visible. When it is dark, overcast, smokey, or dusty, the earth's horizon may not be visible. When one or more of these conditions exists, the pilot refers to the attitude indicator. It is also called the vertical gyro indicator or VGI. The instrument shows the pilot the relative position of the aircraft compared to the earth's horizon.f. Turn and bank indicator
Shows the correct execution of a turn and bank. It also shows the lateral attitude of the aircraft in straight flight. It consists of a turn indicator and a bank indicator. The turn indicator is a gyro mounted in a frame that is pivoted to turn on a longitudinal axis. The direction of the turn is shown on the dial by a pointer. The gyro consists of a glass ball that moves in a curved glass tube filled with a liquid. When the pilot is executing a properly banked turn, the ball stays in the center position. If the ball moves from the center, it shows the aircraft is slipping to the inside or outside of the turn.
g. Navigation systems
h. Identification Friend or Foe (IFF)
IFF is an electronic system that allows a friendly craft to identify itself automatically before approaching near enough to threaten the security of other naval units. A transponder in the friendly aircraft receives a radio-wave challenge. The transponder transmits a response to a proper challenge. All operational aircraft and ships of the armed forces carry transponders to give their identity when challenged.
i. Radio Detection and Ranging (RADAR)
One radar range mile is 12.36 microseconds. That is the time it takes for a radio wave to travel out and return back for one mile.
j. Magnetic (standby) compass
A direct-reading magnetic compass is mounted on the instrument panel. The face of the compass is read like the dial of a gauge.k. Communication systems
Radio equipment does not require interconnecting wires between the sending and receiving stations. It is the only practical means of communication with moving vehicles, such as ships or aircraft. Modern aircraft use navigation aids such as simple radio direction finders to complex navigational systems.107.24 State the purpose of the following armament:
a. Bombs
Designed for release over enemy targets to reduce and neutralize the enemy's war potential by destructive explosion, fire, nuclear reaction, etc.
b. Rockets
c. Missiles
d. Mines
An underwater explosive put into position by surface ships, submarines, or aircraft. A mine explodes only when a target comes near or in contact with it. Their primary objective is to effectively defend or control vital straits, port approaches, convoy anchorages and seaward coastal barriers.e. Torpedoes
Self-propelled underwater missiles used against surface and underwater targets. Torpedoes are the primary weapon employed in antisubmarine warfare. They are designed to search, detect, attack and destroy submarines and surface ships.107.25 Explain the purpose of the following:
a. Circuit breaker
b. Fuse
A protective device inserted in-line with a circuit. It contains a metal that will melt or break when current is increased beyond a specified value, thus disconnecting the circuit from its power source to prevent damage.107.26 Explain the following avionics terms:
a. Voltage
The "driving force" behind current. Voltage, as applied to Ohm's Law, can be stated to be the base value in determining unknown circuit values. Designated by the letter (E).
b. Current
c. Resistance
The opposing force to the flow of electrons. As stated in Ohm's Law, current is inversely proportional to resistance. This means, as the resistance in a circuit increases, the current decreases proportionally. Designated by the letter (R).
King's EAWS Common Core Tutorial |
flygal46@yahoo.com
AZC(AW/NAC) Kimberly King